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Abstract. The pareidolia phenomenon is a discriminating characteristic of psy-
chiatric disorders, expressed through visual illusions seen by patients. Typically,
it can be diagnosed through the noise pareidolia test, which is time-consuming to
both patients and experts. In this research, we propose a novel computer-assisted
method to identify pareidolia phenomenon. The idea is to emulate patient behav-
ior in face detection models to get a similar behavior in noise pareidolia tests as
patients. Unlike most medical image analysis methods, for psychiatric disorders
the ground-truth varies from patient to patient, making this challenging. For a set
of training patients, we fine-tune reference models to detect noise pareidolia test
responses in the same way as each individual patient. Then, a new test patient is
identified by comparing their behavior to the reference models using a distance
function in a trained embedding space. In the experiments, the effectiveness of
the proposed method is demonstrated. Further, we can show that our method can
improve the efficiency of the clinical noise pareidolia test by reducing the number
of necessary test images while reaching a comparable high accuracy.

Keywords: Psychiatric disorders · Emulating patient behavior · Medical multi-
media · Computer-assisted diagnosis.

1 Introduction

The pareidolia phenomenon is a medical condition, where patients see visual illusions
from ambiguous patterns, perceiving them as objects or faces. It is observed as an
important clinical feature in a psychiatric disorder called dementia with Lewy bod-
ies (DLB) [2, 16], but similar illusions can also be seen in others such as Alzheimer’s
Disease (AD) [19]. The so-called noise pareidolia test [10, 19] is used to diagnose the
pareidolia phenomenon in patients. In this test, a medical expert shows a set of black-
and-white noise-like images to a patient, asking them whether they sees a face in the
ambiguous patterns. Fig. 1 shows examples of such test images. While most healthy
people would identify face patterns as shown in Fig. 1a as a face, patients with pareido-
lia phenomenon might also misunderstand patterns as shown in Fig. 1b as a face.

A medical expert can make a diagnosis whether the patient is suffering from a psy-
chiatric disorder using this test. However, in order to get meaningful results, the test
needs to be repeated with a large number of images, resulting in a time-consuming bur-
den for both the patients and the experts [10, 19]. Furthermore, while the test is designed
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(a) A real face. (b) Only random noise.

Fig. 1: Noise pareidolia test images [10]. The red box in (a) shows a region with a real
face, which most people would understand as a face. In contrast, (b) just consists of
noise, which only a patient might misunderstand it as a face.

for DLB patients, patients suffering from AD might also see similar illusions in the test,
making it harder to conclusively diagnose one disease or another [19]. To solve these
issues, in this research, we want to get a better understanding of the noise pareidolia
test. First, we aim to improve the efficiency of the clinical diagnosis by reducing the
number of needed images. Second, we aim to get a better understanding of the disease
and patient types and use this for a computer-assisted diagnosis.

Machine-learning based approaches have provided promising ways for automated
or assisted diagnosis [14, 15]. In particular, medical image analysis has shown great
improvement, advancing fields like cancer detection [17] through anomaly detection.
However, psychiatric phenomena can not easily be identified through common meth-
ods for anomaly detection. In the case of psychiatric disorders, medical conditions are
mainly found in behavioral changes rather than physical changes, and the ground-truth
greatly varies from patient to patient, making it challenging to design a computer-
assisted method for this task.

In this paper, we propose a method to diagnose and better understand pareidolia phe-
nomenon by emulating the behavior of patients. To achieve this, we first prepare a set of
models, each behaving similarly to an individual known patient. As the noise pareidolia
test is based on facial misunderstandings in noise images, we fine-tune a pretrained face
detection model to force a similar kind of face misunderstanding on noise pareidolia test
images, as a patient would have. In collaboration with a laboratory for psychiatry, we
obtained noise pareidolia test images marked with regions misunderstood as faces by
patients, as annotated by medical experts. Using this data, we prepare a set of reference
models for each patient, fine-tuning towards a detection behavior closely emulating the
responses of that patient. Next, given a new patient with an unknown type of behavior,
we prepare a query model and compare it to the behavior of the known reference mod-
els using a proposed distance function. It allows us to detect the type of the patient, and
which combination of existing reference patient their behavior most closely resembles.
We can also show promising performance in whether the patient would behave more
similarly to DLB patients or more similarly to AD patients and healthy people. Lastly,
we propose a sampling method which can be used to reduce the number of necessary
test images, in order to improve the efficiency of clinical testing while keeping the di-
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agnosis accuracy comparable. An evaluation of the proposed method with a selected
number of baseline methods shows promising performance for this novel task.

To summarize, our main contributions are as follows:

– We propose a method for the novel task to identify pareidolia phenomenon in
patients through emulating patient behavior. This is a step towards a computer-
assisted diagnosis for psychiatric conditions.

– Using a dataset annotated by medical experts, we can show promising performance
for discerning real pareidolia (in DLB) from similar visual illusions (such as AD).

– We provide a way to reduce the number of needed test images in clinical noise
pareidolia tests, by sampling for the most decisive test images.

2 Related Work

In the following, we discuss existing research on noise pareidolia tests and other machine-
learning based tasks in medical diagnosis.

Noise Pareidolia Test. There have been a number of researches on pareidolia phe-
nomenon in medical science. Ballard et al. [2] and Uchiyama et al. [16] show that
the pareidolia phenomenon is occurring in psychiatric disorders, mainly dementia with
lewy bodies (DLB). Zhou et al. [20] explain individual differences in pareidolia phe-
nomenon including sex differences, developmental factors, personality traits, and neu-
rodevelopmental factors. The noise pareidolia test [19] uses black-and-white noise-like
images to evaluate facial pareidolia symptoms. In the test process, the images are shown
to patients and they are asked whether they see a face. The individual responses are
used for diagnosing pareidolia. Mamiya et al. [10] discuss the effectiveness of the noise
pareidolia test, showing that the test results correlate with clinical visual hallucinations.
There has been research [1, 11] which defines face pareidolia in a more open sense
of seeing face-like patterns in daily life objects and trying to discern them from real
human faces. However, these works have not been working with the medical defini-
tion of pareidolia phenomenon in psychiatric disorders and did not target to diagnose
them. Furthermore, they do not use noise pareidolia tests or patient data for analysis. To
the best of our knowledge, there is no existing research on medical imaging for noise
pareidolia tests.

Machine Learning for Medical Diagnosis. Machine learning algorithms have been ap-
plied for medical diagnosis and analysis [14, 15], helping medical experts in analyzing
data. In medical image analysis, many works propose deep neural network-based meth-
ods for computed tomography (CT) scans, magnetic resonance imaging (MRI) scans,
and retinal photography [6]. Xu et al. [17] perform classification, segmentation, and vi-
sualization in large-scale tissue histopathology images to help experts diagnose tumor
and cancer subtypes. Kermany et al. [7] develop an effective transfer learning algorithm
to process retinal image for classifying macular degeneration and diabetic retinopathy,
which are related to blindness. Another use for machine learning for medical applica-
tions is clinical psychology and psychiatry [4]. Klöppel et al. [8] use support vector
machines to assist diagnosing AD by structural neuroimaging data. Pettersson-Yeo et
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Fig. 2: Flowchart of the proposed method. The left part shows the emulation of patient
behavior (details in Sec. 3.1). The right part describes the proposed method for identi-
fying pareidolia phenomenon (details in Sec. 3.2).

al. [13] propose a multimodal approach which include genetic data to identfying psy-
chosis. However, these existing works mostly rely on physically observed data of the
patient, such as image, genetic and conversational data. In the case of pareidolia phe-
nomenon, the medical condition is mainly observed through the behavior of a patient,
and can often vary based on daily condition. Furthermore, the characteristics of seen
visual illusions greatly vary from patient to patient, making a training and optimization
for single pattern difficult. As such, a better approach for identifying this psychiatric
phenomenon is needed.

3 Proposed Method

In this section, we describe the proposed method of identifying pareidolia phenomenon
by modelling patients. The proposed method consists of two stages: First, the patient
behavior in the noise pareidolia test is emulated by retraining face detection models.
As the clinical noise pareidolia test is based on confusing noise patterns with faces, we
use face detection models fine-tuned towards misunderstanding noise in the same way
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as individual patients. With this, we gain a set of reference models, each emulating an
individual patient. Second, the type of an unknown patient is identified by comparing
it with all reference models. We consider the unknown patient to be a query model.
The difference between the query model and each reference model is described using a
distance function. This way, the method can identify which models have a similar be-
havior and decide the type of the query model. The two stages are discussed in Sec. 3.1
and 3.2, respectively. The full method is depicted in Fig. 2.

3.1 Emulation of Patient Behavior

In the first step, face detection models are trained to emulate healthy people and patients,
with regards to how they would respond to the noise pareidolia test. We first prepare
pareidolia test data which is then used for training the reference models.

Pareidolia Patient Data. Previous work [10] provided 43 black-and-white noise parei-
dolia images, including both real face patterns and random noise misidentifiable by
patients. Using these images, medical experts from the Integrated Innovation Lab for
Psychiatry, Keio University School of Medicine helped us to annotate a dataset using
real patient responses for use in this paper. As the number of the existing images is
not enough for training face detection models to emulate human behavior, we extend
the data using data augmentation. We first generate new random background images
based on Perlin noise [12]. Next, patterns mistakenly identified as faces by each pa-
tients are randomly embedded, using rotation, flipping and resizing, in order to increase
the amount of images.

Training Method for Reference Models. For training the reference models, we use a
two-step process: First, a face detection model based on Single Shot Multi-Box De-
tector (SSD) [9] is pretrained on the WIDER FACE dataset [18]. This ensures that it
detects faces closely approximating a healthy human. Second, the pretrained face de-
tection model is fine-tuned on the training set consisting the noise pareidolia test images
prepared by data augmentation. This second step fine-tunes the behavior of the model
to resemble each individual patient. This step is repeated for each patient individually,
using different subsets of annotated data. For instance, to emulate Patient A, only the
patterns identified as faces by Patient A and the real face patterns are labeled as positive
samples. In order to emulate small deviations even within the same patient type (e.g., a
same patient giving slightly different responses on different time of the day), we train
a set of models for each patient, introducing some random noise, shuffled subsets of
training data, and different random seeds.

3.2 Identification of Patient Type

In the previous section, we prepared a number of reference models fri , i ∈ {1, 2, ...Mr}.
To identify if a given query model fq has pareidolia phenomenon, first, N test images
Xt are input to the reference models and the query model. The test data Xt include ran-
dom background images without any appended patterns, as well as images containing
real faces and some patterns misidentified by the patients. Then, the distance between
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Fig. 3: Definition of distance in embedding space dE . Two models are tested with N
images, and mapped into a 2-dimensional embedding space using a linear mapping.

the outputs of the query model fq and each reference models fri is measured using a de-
signed function d(·, ·). Finally, the query model is considered to have the same type of
behavior with the reference models close to it. In this procedure, the key to distinguish
if the query model is similar to the model with pareidolia phenomenon is the distance
function. We propose a distance function that makes the models of same pareidolia phe-
nomenon closer to each other. In addition, a sampling method is proposed to reduce the
number of necessary test image from N to N ′, making it more feasible and efficient in
practice.

Distance Function and Embedding Space. To compute distances, we first embed the
models into a low-dimensional space. The embedding is trained in a metric learning
way, pushing similar patients close to another while pushing different types of disorder
apart. Then, the Euclidean distance in the embedding space dE is used to compute the
distance between two models fm, m ∈ {1, 2}, as shown in Fig. 3. Each model fm is
tested with the test data Xt with N images, and the number of detected objects in each
test images are listed as an output vector nm = {n(i)m }Ni=1, where n(i)m is the number of
object detected in the i-th image. Then, nm is mapped into a 2-dimensional embedding
vector zm in the embedding space using a linear mapping zm = Wnm,W ∈ R2×N .
Finally, the Euclidean distance between the embedding vector zm of the two models is
calculated as dE(f1(Xt), f2(Xt)) = ‖z1 − z2‖2, where ‖ · ‖2 is `2 norm.

In this process, the weight matrix W is learned to optimize this distance function.
Contrastive loss [3, 5], a distance-based loss function commonly used for metric learn-
ing is adopted. We compute the contrastive loss over pairs of samples in a training model
set {f tri }

Mtr
i=1 , which consists of some of the reference models. In our method, we can

defined the contrastive loss on two levels: type-level and patient-level. The type-level
contrastive loss Lt is positively correlated with the distance dE for a pair of models
with the same type, for instance, both having pareidolia phenomenon. In contrast, for
models of different types, it is negatively correlated with dE . Similarly, the patient-level
contrastive loss Lp is positively correlated with dE between a pair of models emulating
the same patient, and negatively correlated with dE between models emulating different
patients. Then, the weight W is updated by gradient descent in order to minimize the
contrastive loss, and other reference models can be used as a test model set to perform
identification with the optimized distance function.
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Fig. 4: Identifying models using sampling method. Test images are sampled using the
information of the training model set, reducing the number of needed tests.

Sampling Methods. The key idea of sampling method is to reduce the number of test
results necessary for calculating the embedding vector. It is achieved by involving a reg-
ularization term while training the embedding for the distance function. Concretely, dur-
ing the training process of the embedding, the parameter W is optimized to minimize
the contrastive loss. In the sampling method, a regularization term is added to the ob-
jective function argminW (L(W) + λ‖W‖2,1), where λ is a regularization parameter,
‖W‖2,1 is the L2,1 norm of the weight matrix W, defined as ‖W‖2,1 =

∑N
i=1 ‖wi‖2,

where wi ∈ R2 is each column of W.
After training with the training model set, the objective function is minimized, the

L2,1 norm of the weight will be smaller, and there will be more zero columns wi = 0 in
the weight W. It can be assumed that there areN ′ non-zero columns (N ′ ≤ N ) and the
set of non-zero columns is K = {kj}N

′

j=1 ⊆ {1, . . . , N}. When the embedding vector
of each model fm is calculated, the linear mapping is

zm = Wnm =

N∑
i=1

win
(i)
m =

N ′∑
j=1

wkj
n(kj)

m . (1)

Here, the test result on the i-th test image n
(i)
m is multiplied with the corresponding

column wi. If wi is zero, win
(i)
m will always be zero, and the corresponding test results

n
(i)
m have no effect to the embedding vector zm of the model. Thus, the embedding

vector is only related to N ′ items wkj
n

(kj)
m where kj ∈ K. By using this, unimportant

test images which are corresponding to the zero columns in W can be omitted, and the
number of the test images can be reduced to N ′.
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Identifying Patients. The complete flow of the patient identification is depicted in Fig. 4.
First, the models in the training set are tested with all of the N test images. Next, the
embedding of the distance function is trained, in order to minimize the objective func-
tion with the L2,1 regularization term. Then,N ′ non-zero columns in W are found, and
we can sample the test images by only using the kj-th images, which are correspond-
ing to the non-zero columns. Finally, the test model set and the query model only need
to be tested with the N ′ images, and the type of the query model can be identified by
comparing the distances between the query model and the reference models.

4 Evaluation

To verify the effectiveness of the proposed method, experiments are carried out. We
evaluate patient identification performance and the proposed sampling method.

4.1 Experimental Setup

Preprocessing. The experiments are using the proposed method as introduced in Sec. 3.
We were provided a closed dataset with noise pareidolia test images, consisting of an-
notated visual illusion regions for five patients (four DLB and one AD). We call the
AD patient Patient A, and the DLB patients Patient B-E. Using this, we extract four to
twenty-one isolated visual illusion regions for each patient. Then, we use data augmen-
tation to generate a high number of noise images with embedded annotated regions for
each patient. In total, we end up with 2520 images: First, there are 2100 training images,
consisting of seven subsets with different embedded patterns (five patients, healthy, and
no patterns) with 300 images each. Using these training images, we train 50 reference
models for each of the five patients and the healthy people (i.e., 300 models in total),
by annotating corresponding patterns to closely emulating their characteristics. Second,
there are 420 test images Xt, consisting of 60 images each for every subset. These are
used for testing the identification of patient types.

While the dataset contains annotated visual illusions for both DLB and AD patients,
medically speaking, the pareidolia phenomenon only describes the condition for DLB
patients [2, 16, 19]. Because of this, we group the reference models into two: pareidolia
(DLB patients) and non-pareidolia (AD and healthy people). Lastly, the target is to
identify whether a query model (i.e., a new unknown patient model) is a pareidolia or a
non-pareidolia model.

Embedding Space. In order to identify the type of models using the distance function,
we train the embedding with the training model set. The experiment is repeated for
four times: For each time, 50 models for one of the four DLB patients (Patient B, C, D
and E) are used as query models, and 60 models are randomly selected as the training
model set. After training the embedding and sampling the test images, the remaining
190 models are used as reference models. For each of the query models, the distances
from the reference models are calculated. By ranking the type of reference models by
distance, the average precision of identifying the query model is calculated. Repeating
the evaluation on each query model, the mean average precision (mAP) of identifying
all models is obtained as the evaluation metric.
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4.2 Comparison Methods and Ablation Studies

Our paper is, to the best of our knowledge, the first research to tackle pareidolia diagno-
sis as a multimedia task. Because of this, we do not have proper comparison methods to
compare to. Therefore, we propose a variety of comparison methods as ablation studies
in order to verify our choice of approaches. Furthermore, we can show a promising per-
formance in getting a better understanding of this disease, further discussed in Sec. 4.4.

Distance Functions. To verify the effectiveness of the proposed distance function, com-
parison experiments are carried out for different distance functions. We compare the
proposed method dE to two baseline distance functions: dN (Baseline 1) is defined as
the difference between the numbers of the images with patterns detected as faces by
the two models. dH (Baseline 2) is the Hamming distance of the test results. For each
model fm, there is a N -dimension output vector nm. The distance dH between f1 and
f2 is defined as the Hamming distance between n1 and n2.

Loss Functions. The embedding for the proposed distance function is trained with a
contrastive loss. We evaluate two types of loss functions: The one-way loss is to use
only the type-level loss Lt. In this case, models for different patients with the same
type are not discriminated. The two-way loss is defined as the sum of the type-level loss
Lt and the patient-level Lp. Using two-way loss can make the models separated on the
embedding space by both the type and the patient.

Sampling Methods. To evaluate the efficiency of the proposed sampling, a random
sampling method is also used in the experiment as a baseline. After the experiment
using the proposed sampling method, we sample the same number of test images totally
randomly. Then, we train the embedding and conduct identification again, using only
the randomly sampled test images. The mAP of using this random sampling method is
compared with the performance of the proposed sampling method.

4.3 Results

First, we look at the distribution of the embedding space. Two examples are plotted in
Fig. 5, where Fig. 5a shows an embedding trained with one-way loss and Fig. 5b is
trained with two-way loss. The models of Healthy and Patient A (called A onwards) are
non-pareidolia models, and the others are pareidolia models. Both show that Healthy
and A type models are relatively far from those of B, C, D, and E in the embedding
space. The result indicates that the embedding can successfully separate the pareidolia
phenomenon, which is only found in those of the latter. Moreover, Fig. 5b indicates
that, by training with two-way loss, the models of each patient can also be successfully
separated from another.

Second, we evaluate the performance of the patient identification, as shown in Ta-
ble 1. Baseline distance functions are used without training and sampling. The results
show that the proposed distance function dE reaches a higher mAP compared to the
baseline distance functions. For both the two-way loss and the one-way loss, the pro-
posed sampling method outperforms the random sampling by having a higher mAP
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Fig. 5: Distribution of the models on the embedding space. Each color indicates a dif-
ferent patient. Models of Healthy and A are medically non-pareidolia, while those of B,
C, D and E have pareidolia phenomenon.

Table 1: Performance of identifying type of the models. The proposed method outper-
forms baseline comparisons for both the distance functions and the sampling functions.

Distance Function Loss Function Sampling Method (N = 420) Avg. mAP
Baseline 1 (dN ) - None (N ′ = 420) 0.6565
Baseline 2 (dH ) - None (N ′ = 420) 0.5322

Proposed (dE)
One-way loss

Proposed (N ′ = 68.5) 0.9014
Random (N ′ = 68.5) 0.6472

Two-way loss
Proposed (N ′ = 78.5) 0.8736
Random (N ′ = 78.5) 0.7438

while using the same number of test images. The mAP of one-way loss is slightly higher
than that of two-way loss. In the process of training the embedding, the proposed sam-
pling method is used to reduce the number of test images. Before sampling, the number
of test images is N = 420. However, using the sampling method, the number can be
reduced to N ′, when the number of zero columns in W is N ′. In average, our proposed
method reaches an N ′ of 68.5 for the one-way loss and one of 78.5 for the two-way
loss, resulting in a significant reduction compared to the original method.

4.4 Discussion

The results show promising performance for identifying the type of new patients. The
embedding separates different types of models, and the proposed distance function
outperforms the two baseline distance functions. Furthermore, the proposed sampling
method reduces the number of test image to a more feasible value for a diagnosis, while
still reaching higher accuracy than random sampling. Therefore, the study provides a
novel approach to a computer-assisted diagnosis of psychiatric disorders.

Comparing the loss functions, the method using one-way loss can reach a slightly
higher accuracy. However, as Fig. 5 shows, one-way loss makes the models of B, C, D
and E mixed with each other in the embedding space, while two-way loss can separate
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models of different patient. This result indicates that using two-way loss may provide
more information for medical analysis of patients and classification of pareidolia phe-
nomenon, while keeping a high accuracy for identification.

We found some models showing a lower-than-average performance. For example,
in Fig. 5, the models of D is distributed closer to non-pareidolia models. In discussion
with medical experts, we believe this outlier may be due to a characteristic of patient
behavior not yet well understood. Some DLB patients like D may also see some illu-
sions which are more likely to be seen by AD patients. As such, this finding could be
further studied using the embedding trained with the proposed method.

5 Conclusion

In this paper, we proposed a novel method for computer-assisted noise pareidolia test
by emulating patient behavior. We train per-patient reference models, incorporating in-
dividual behavior differences of each patient. Using a distance function, we can then
identify the characteristics of unknown patients by comparing them to the existing ref-
erence models. A sampling method is designed to reduce the number of needed tests,
providing promising performance for improving efficiency of the clinical noise pareido-
lia test. The experimental results show that the proposed method can reach a promising
performance. To the best of our knowledge, this is the first work to apply machine
learning in computer-assisted diagnosis of pareidolia phenomenon for patients. The un-
derstanding of patient behavior gained through this research could yield new insights
for a better understanding of the psychiatric disorder.

Currently, we use individual patients as reference models due to the low number of
patients in our dataset. In future, with a larger amount of patient data, it may be possible
to use patient clusters as reference. Furthermore, data augmentation for extending the
training data is based on the assumption that the patient always tend to see face in
similar patterns of different scales. Future study can explore other possible methods of
data augmentation for a more clinical coherent emulation of patient behavior.
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